Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 446: 138881, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428086

RESUMO

Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.


Assuntos
Clara de Ovo , Pasteurização , Pasteurização/métodos , Clara de Ovo/química , Agregados Proteicos , Ovos , Solubilidade
2.
Food Res Int ; 175: 113709, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129033

RESUMO

Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.


Assuntos
Temperatura Alta , Miofibrilas , Suínos , Animais , Cristalização , Miofibrilas/química , Peróxido de Hidrogênio/metabolismo , Proteínas Musculares/química , Géis/química , Água/química
3.
J Sci Food Agric ; 103(15): 7517-7528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37440710

RESUMO

BACKGROUND: Lipid droplets (LDs) are important multifunctional organelles responsible for lipid metabolism of postmortem muscle. However, the dynamics in their building blocks (cores and layers) and phosphorylation of lipid droplet-related proteins (LDRPs) regulating meat lipolysis remain unknown at salt-stimulated conditions. RESULTS: LDRPs extracted from cured porcine biceps femoris (1% and 3% salt) were subjected to label-free quantitative phosphoproteomic analysis and LDs morphological validation. Results indicated that 3% salt curing significantly decreased triglyceride (TG) content with increase in glycerol and decrease in LDs fluorescence compared to 1% salt curing. Comparative phosphoproteomics showed that there were significant changes in phosphorylation at 386 sites on 174 LDRPs between assayed groups (P < 0.05). These differential proteins were mainly involved in lipid and carbohydrate metabolism. Curing of 3% salt induced more site-specific phosphorylation of perilipin 1 (PLIN1, at Ser81) and adipose triglyceride lipase (ATGL, at Ser399) than 1%, whereas the phosphorylation (at Ser600) of hormone-sensitive lipase (HSL) was up-regulated. Ultrastructure imaging showed that LDs were mostly associated with mitochondria, and the average diameter of LDs decreased from 2.34 µm (1% salt) to 1.73 µm (3% salt). CONCLUSION: Phosphoproteomics unraveled salt-stimulated LDRPs phosphorylation of cured porcine meat provoked intensified lipolysis. Curing of 3% salt allowed an enhanced lipolysis than 1% by up-regulating the phosphorylation sites of LDRPs and recruited lipases. The visible splitting of LDs, together with sarcoplasmic disorganization, supported the lipolysis robustness following 3% salt curing. The finding provides optimization ideas for high-quality production of cured meat products. © 2023 Society of Chemical Industry.


Assuntos
Músculos Isquiossurais , Metabolismo dos Lipídeos , Animais , Suínos , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Lipólise , Cloreto de Sódio/metabolismo , Biologia Computacional
4.
Food Chem ; 429: 136836, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453331

RESUMO

During storage and processing, muscle proteins, e.g. myosin and myoglobin, will inevitably undergo degeneration, which is thus accompanied by quality deterioration of muscle foods. Some exogenous additives have been widely used to interact with muscle proteins to stabilize the quality of muscle foods. Molecular docking and molecular dynamics simulation (MDS) are regarded as promising tools for recognizing dynamic molecular information at atomic level. Molecular docking and MDS can explore chemical bonds, specific binding sites, spatial structure changes, and binding energy between additives and muscle proteins. Development and workflow of molecular docking and MDS are systematically summarized in this review. Roles of molecular simulations are, for the first time, comprehensively discussed in recognizing the interaction details between muscle proteins and exogenous additives aimed for stabilizing color, texture, flavor, and other properties of muscle foods. Finally, research directions of molecular docking and MDS for improving the qualities of muscle foods are discussed.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Musculares , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica
5.
Int J Biol Macromol ; 246: 125711, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414321

RESUMO

This study investigated the impact of varied pH treatments on the structural, emulsification, and interfacial adsorption properties of egg yolk. The solubility of egg yolk proteins decreased and then increased in response to pH changes, with a minimum value (41.95 %) observed at pH 5.0. The alkaline condition (pH 9.0) significantly impacted the secondary/tertiary structure of egg yolk, with the yolk solution displaying the lowest surface tension value (15.98 mN/m). Emulsion stability was found to be optimal when egg yolk was used as the stabilizer at pH 9.0, which corresponded to the more flexible diastolic structure, smaller emulsion droplets, increased viscoelasticity, and enhanced resistance to creaming. At pH 9.0, proteins exhibited a maximum solubility (90.79 %) due to their unfolded conformation, yet the protein adsorption content at the oil-water interface showed relatively low (54.21 %). At this time, electrostatic repulsion between the droplets and the spatial site barrier made by proteins that were unable to efficiently adsorb at the oil-water interface kept the emulsion stable. Moreover, it was found that different pH treatments could effectively regulate the relative adsorption contents of various protein subunits at the oil-water interface, and all proteins except livetin displayed good interfacial adsorption capacity at the oil-water interface.


Assuntos
Proteínas do Ovo , Água , Adsorção , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas do Ovo/química , Água/química , Gema de Ovo/química
6.
Ultrason Sonochem ; 94: 106318, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753829

RESUMO

Ultrasound treatment has been a good hurdle technique for meat curing processing, where both physical and chemical consequences can be involved towards final quality of obtained products. However, the specific correlation between ultrasound parameters and muscle fiber fragmentation and myofibrillar microstructural changes during curing deserve further evaluation. In present study, we comparatively studied the effect of ultrasound-assisted brining (UAB) and static brining (SB) on the muscle proteolysis events and microstructural/morphological variation of porcine meat as well as the physicochemical indices and histological characteristics. The results showed that UAB (20 kHz, 315 W for 1 h) could markedly enhance the muscle proteolysis with higher free-/peptide-bound alpha-amino-nitrogen (α-NH2-N) content (P < 0.05) than SB treatment and greatly improved the fragmentation of muscle fiber tissues of cured meat. Meanwhile, UAB processing favored more opening structures of myofibrillar proteins with more hydrophobic groups being exposed. The quantitative histological analysis revealed that, compared with SB treatment, UAB could significantly increase the gap between muscle fibers and the swelling of the perimysium (P < 0.01), proving an efficient curing process with better textural and water holding properties.


Assuntos
Carne , Fibras Musculares Esqueléticas , Suínos , Animais , Carne/análise , Proteólise , Músculo Esquelético , Proteínas
7.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239320

RESUMO

Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.

8.
Poult Sci ; 101(10): 102053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986946

RESUMO

The objective of this study was to compare the immunomodulatory effects of the chicken soups prepared with the native free-range chickens and the commercial caged broilers in the immunosuppressive mice. The immunosuppressive mice model was established by the intraperitoneal injection of 100 mg of cyclophosphamide (CTX) per kg body weight. The powders of Gushi Chicken Soup (GCS), Honglashan Chicken Soup (HCS), and Cobb Broiler Soup (CBS) were prepared by high-pressure stewing followed by spray drying. The chicken soups' nutrient content and the effects of three chicken soups on the body weight, organ index, blood index, and serum cytokine and immunoglobulin contents in the immunosuppressive mice were determined. The three chicken soups promoted the recovery of immunosuppressive mice, but the expression mechanisms were different. The GCS was more effective than the HCS and CBS in restoring blood index, promoting cytokine secretion, and increasing immunoglobulin content (P < 0.05). The HCS stimulated the Th1-type immune response and promoted immunoglobulin secretion (P < 0.05), while the CBS increased the production of CD4+ and promoted the T-cell functions better than other soups (P < 0.05). Although soups from the native free-range chickens and the commercial caged broilers showed distinctly different mechanisms in promoting immunity, both could be used as potential immunomodulators.


Assuntos
Galinhas , Imunidade , Animais , Ciclofosfamida/farmacologia , Citocinas , Camundongos
9.
RSC Adv ; 12(28): 18215-18223, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35800299

RESUMO

A thiourea modified low molecular weight polyamide (TLMPA) as a room temperature curing agent was synthesized by a two-step method. Firstly, a low molecular weight polyamide curing agent (LMPA) with low viscosity and high amine value was synthesized by amidation of sebacic acid with tetraethylenepentamine, then the synthesized curing agent was modified with thiourea to increase its reactivity at room temperature. The optimal reaction conditions were studied by L9(33) orthogonal experiments. The structure of the prepared curing agent was analyzed by Fourier transform infrared spectroscopy (FT-IR). The kinetics of TLMPA curing of E-51 epoxy resin was analyzed using the Kissinger method with non-isothermal differential scanning calorimetry (DSC). The activation energy of TLMPA/E-51 calculated by the Kissinger method and FWO method was 38.79 kJ mol-1 and 42.73 kJ mol-1. The nano-SiO2 filler was compounded with E-51 epoxy resin, TLMPA, allyl glycidyl ether diluent, and KH-560 coupling agent to prepare the room temperature curing epoxy resin (EP) system. L9(34) orthogonal experiments were carried out to study the effect of various factors on the mechanical properties of the cured resin systems. The best formulation of the system is that the content of nano-SiO2, curing agent, diluent, and coupling agent is 3, 35, 15, 1 wt%, respectively. With the optimal formulation, the tensile and shear strength, tensile strength, impact strength, and bending strength of the cured EP system was 13.19 MPa, 53.8 MPa, 52.16 kJ m-2, and 94.95 MPa, respectively.

10.
Foods ; 11(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741970

RESUMO

In order to clarify the influence of the thermal degradation of collagen fibers on the texture profile analysis (TPA) parameters of pig trotter stewed with soy sauce (PTSWSS), TPA (springiness, chewiness, hardness, and gumminess), the secondary structures, the cross-linkage, decorin (DCN) and glycosaminoglycan (GAG) levels, and the histochemical morphology of collagen fibers during the stewing process (0, 30, 60, 120 min) were assessed. The springiness and hardness increased after 30 min of stewing, along with the denaturation of collagen proteins. TPA parameters improved with the prolonged stewing times of 60 and 120 min, along with the ultra-structural dissolution of collagen fibers, and a substantial reduction in cross-linkage, DCN, and GAG levels, and the unfolded triple-helix structure. This study concluded that the TPA parameters of PTSWSS were dependent on the stewing time, and that the improvement in TPA parameters with longer stewing time could primarily be attributed to the thermal degradation of collagen fibers.

11.
Food Res Int ; 157: 111449, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761689

RESUMO

Myosin filament plays a critical role in water-trapping and thermodynamic regulation during processing of brined muscle foods. The redox state and availability of proteolytic/antioxidant enzymes affected by salt may change the ion-binding capacity of myosin consequently contributing to swelling and rehydration. Thus, this study investigated the impact of different salt content (0%, 1%, 2%, 3%, 4%, 5% NaCl) and oxidation in vitro (10 mM H2O2/ascorbate-based hydroxyl radical (OH)-generating system) on the oxidative stability, solubility/dispersion capacity, chymotrypsin digestibility, aggregation site and the microrheological properties of isolated porcine myosin. The result showed that, brining at 2% salt exposed more sulfhydryl groups and inhibited the formation of disulfide bond, whereby smaller dispersed structure (diameter within 10-50 nm) and higher Ca2+-ATPase activity of the denatured myosin were observed. Accordingly, gel electrophoresis showed that myosin S1 and HMM subunits were highly oxidized and susceptible to reversible assembles. Despite enhanced hydrophobic interactions between swelled myosin at 3% salt content, ≥4% salt greatly promoted the exposure/polarization of tryptophan and cross-linking structures, mainly occurring at myosin S2 portion. The results of micro-rheology proved that oxidized myosin formed a tighter heat-set network following rehydration at high ion strength (≥4% salt), suggesting an increased inter-droplet resistance and macroscopic viscosity. This work is expected to give some useful insights into improved texture and functionality of engineered muscle foods.


Assuntos
Peróxido de Hidrogênio , Cloreto de Sódio , Animais , Miosinas/química , Oxirredução , Isoformas de Proteínas , Suínos
12.
Front Nutr ; 9: 925846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719162

RESUMO

Over the latest decade, lipidomics has been extensively developed to give robust strength to the qualitative and quantitative information of lipid molecules derived from physiological animal tissues and edible muscle foods. The main lipidomics analytical platforms include mass spectrometry (MS) and nuclear magnetic resonance (NMR), where MS-based approaches [e.g., "shotgun lipidomics," ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS)] have been widely used due to their good sensitivity, high availability, and accuracy in identification/quantification of basal lipid profiles in complex biological point of view. However, each method has limitations for lipid-species [e.g., fatty acids, triglycerides (TGs), and phospholipids (PLs)] analysis, and necessitating the extension of effective chemometric-resolved modeling and novel bioinformatic strategies toward molecular insights into alterations in the metabolic pathway. This review summarized the latest research advances regarding the application of advanced lipidomics in muscle origin and meat processing. We concisely highlighted and presented how the biosynthesis and decomposition of muscle-derived lipid molecules can be tailored by intrinsic characteristics during meat production (i.e., muscle type, breed, feeding, and freshness). Meanwhile, the consequences of some crucial hurdle techniques from both thermal/non-thermal perspectives were also discussed, as well as the role of salting/fermentation behaviors in postmortem lipid biotransformation. Finally, we proposed the inter-relationship between potential/putative lipid biomarkers in representative physiological muscles and processed meats, their metabolism accessibility, general nutritional uptake, and potency on human health.

13.
ACS Omega ; 7(17): 14527-14534, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557659

RESUMO

In order to shorten the ignition delay of 2-azido-N,N-dimethylethanamine (DMAZ) and dinitrogen tetroxide (NTO), four amines [tert-butylamine, pyrrole, N,N,N',N'-tetramethyl ethylenediamine (TMEDA), and diethylenetriamine (DABH)] with a mass fraction of 5% were added to DMAZ, and the potential energy change and the product change during the reaction of the mixture of an additive and DMAZ with NTO were analyzed by Reactive molecular dynamics (ReaxFF MD) calculation. Then, the ignition delay of the mixture of the additive and DMAZ as well as pure DMAZ with NTO was measured by a drop experiment with a photoelectric sensor and high-speed camera. The results show that the addition of pyrrole greatly reduced the time to reach the maximum system energy and greatly increased the rate of HNO2 formation. The dripping of the fuel was approximately a uniform linear motion, and the expression was y = 43.13 + 7.16x. The ignition delay time recorded by the camera was in good agreement with that of the optical signal. The measured ignition delay time for DMAZ with NTO was 261.5 ms. The mixture of pyrrole and DMAZ with NTO had the shortest ignition delay time of 100 ms, and the proportion of shortening the ignition delay time was the largest. The results of the droplet experiment were consistent with those of ReaxFF MD simulation, indicating that HNO2 plays an important role in the ignition delay, that is, the formation rate of HNO2 is positively correlated with the ignition delay.

14.
Poult Sci ; 101(3): 101619, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995877

RESUMO

It's a difficult task for researchers to identify the gender of chicken eggs by nondestructive approach in the early of incubation, which not only could reduce the cost of incubation, but also could improve the welfare of chicks. Therefore, SPME/GC-MS has been applied to investigate its potential as a nondestructive tool for characterizing the differences of odor between male and female chicken eggs during early of incubation and even before hatch. The results showed that more volatiles were found in female White leghorn eggs during early of incubation and 6,10-dimethyl-5,9-undecadien-2-one, 6-methyl-5-hepten-2-one, nonanal, decanal, octanal, 2-nonen-1-ol, etc. were important for the distinction of male and female White leghorn eggs during E1-E9 of incubation. 2-ethyl-1-hexanol; octanal, nonanal, 2,2,4-trimethyl-3-carboxyisopropyl pentanoic acid isobutyl ester; 2-nonen-1-ol, cyclopropanecarboxamide, heptadecane were correlated with gender of unhatched White leghorn, Hy-line brown and Jing fen eggs, respectively. Moreover, sex-related volatiles have been strongly influenced by incubation process and egg breed, and to be related to steroid hormone biosynthesis. What's more, this study enables us to develop a new visual for ovo sexing of chicken eggs and advances our understanding of the biological significance behind volatiles emitted from chicken eggs.


Assuntos
Galinhas , Odorantes , Animais , Quimiometria , Ovos/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Masculino , Odorantes/análise , Óvulo , Microextração em Fase Sólida/veterinária
15.
Food Chem ; 373(Pt B): 131597, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815115

RESUMO

Towards a better understanding of the formation mechanism of salt on intramuscular triglyceride (TG) hydrolysis occurring in biceps femoris (BF) muscles during dry-salting process, the changes of TG hydrolysis, TG hydrolysis activity and phosphorylation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) as well as their regulatory proteins (Perilipin1, ABHD5, G0S2) with different salt content (0%, 1%, 3%, 5%) and salting time (the first and third day) were analyzed. The results showed that dry-salting significantly increased the TG hydrolase activity and hydrolysis extent with salting process proceed (P < 0.05), especially upon the treatment with 3% amount of salt. The SDS-PAGE and Western-blot results further demonstrated that the promotion of salt on TG hydrolysis in intramuscular adipocytes was mainly attributed to the activation of protein kinase activity and protein phosphorylation process. Accordingly, the ATGL and HSL were activated, and meanwhile, the TG hydrolysis pivotal switch perilipin1 was also turned on by phosphorylation modification.


Assuntos
Músculos Isquiossurais , Esterol Esterase , Animais , Músculos Isquiossurais/metabolismo , Hidrólise , Lipase/genética , Lipase/metabolismo , Lipídeos , Lipólise , Fosforilação , Esterol Esterase/genética , Esterol Esterase/metabolismo , Suínos , Triglicerídeos
16.
Food Chem ; 370: 131074, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537423

RESUMO

Salting and rehydration of myofibrils can be interfered with free radical diffusion process. This study investigated the effects of salt content (0, 1, 3 and 5%) and H2O2/ascorbate-based hydroxyl radical (OH)-generating system (1, 10, 20 mM H2O2) on the oxidation, conformation, aggregation, and thermal stability of porcine myofibrillar proteins (MPs). Results showed that 5% of salt inhibited carbonylation of MPs with intensive sulfhydryl loss and tryptophan quenching. Fourier transform infrared (FTIR), laser light scattering, and scanning electron microscopy (SEM) suggested that 20 mM H2O2 transformed more α-helix into ß-sheet of MPs, favoring larger aggregates being selectively exposed towards solvent during salt-induced fiber swelling. Oxidized MPs brined with ≤1% salt underwent partial unfolding with higher flexibility, while up to 5% of salt greatly hampered their hydration potential and weakened inter-fibrillar hydrogen bond with an improved protein solubility. Micro-rheology revealed that 1% of salt and 10 mM H2O2 rendered a denser structure of heat-set MPs gels.


Assuntos
Peróxido de Hidrogênio , Miofibrilas , Animais , Géis , Oxirredução , Estresse Oxidativo , Reologia , Suínos
17.
Meat Sci ; 175: 108453, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33548840

RESUMO

The objective of this study was to investigate the effects of repeated freeze-thaw cycles on microorganisms, amino acid composition profile, chemical composition, mineral concentrations, water mobility, and fat of beef and chicken meats. Pure cultures of specific fungi and bacteria were separately injected into the minced meat. Apart from Pseudomonas, the total count of microorganisms significantly increased (P < 0.05) during refreezing treatment with the increase of storage period in both beef and chicken meats. During freezing treatment, the total count of Staphylococcus aureus, spore forming bacteria, and lactic acid bacteria were meat-type dependent. In conclusion, freeze-thaw cycles increased the microbial counts and decreased the water holding capacity, amino acids, and mineral concentrations of beef and chicken meats.


Assuntos
Armazenamento de Alimentos/métodos , Congelamento , Produtos da Carne/análise , Produtos da Carne/microbiologia , Tecido Adiposo , Aminoácidos/análise , Animais , Bactérias/crescimento & desenvolvimento , Bovinos , Galinhas , Microbiologia de Alimentos , Qualidade dos Alimentos , Alimentos Congelados/análise , Alimentos Congelados/microbiologia , Fungos/crescimento & desenvolvimento , Água/química
18.
RSC Adv ; 11(39): 24172-24182, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479060

RESUMO

In this work, TiO2/SBA-15 was synthesized via an in situ hydrothermal method and was used for vacuum-ultraviolet (VUV) photocatalytic degradation of unsymmetrical dimethylhydrazine (UDMH) for the first time. Compared with photocatalysis under UV irradiation, VUV photocatalysis exhibited higher photodegradation efficiency due to the synergetic effect of direct photolysis, indirect photooxidation and photocatalytic oxidation. The synthesized TiO2/SBA-15 catalysts exhibited ordered mesoporous structure and anatase phase TiO2. Titanium content, initial pH and substrate concentration impacted degradation efficiency of UDMH in the VUV photocatalysis process. Among the prepared catalysts, TiO2/SBA-15 with the molar ratio of Ti/Si = 1 : 3 (TS-2) showed the best photocatalytic activity under VUV light, with the rate constant of 0.02511 min-1, which is 1.91 times that with VUV/P25. The superior photocatalytic activity of TS-2 is mainly related to the good balance between the specific surface area and TiO2 contents. The photodegradation efficiency decreases with the increase in the initial UDMH concentration and the maximum degradation rate was obtained at pH 9.0. In the VUV/TS-2 process, ˙OH played a more important role in the degradation of UDMH than ˙O2 - and the degradation pathways contained bond breaking, amidation, isomerisation and oxidation reactions. The TS-2 also showed good reusability with the rate constant maintained at above 90% after five cycles and exhibited satisfactory degradation efficiency in tap water.

19.
Int J Food Microbiol ; 331: 108731, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32535525

RESUMO

This study aims to enhance the color and microbiological qualities of a raw beef using natural ingredients. Nitroso-hemoglobin (NO-Hb) integrated with vitamin C (VC), calcium lactate, and ginger complexation were used as natural inhibitors against the growth of aerobic and pathogenic bacteria, namely (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella. NO-Hb inhibited E. coli, S. aureus, and Salmonella, and enhanced the color stability more than nitrite in the minced beef model. After the multiexponential analysis of relaxation decays, the water component (T2b) was analyzed using the low-field NMR. The results indicated that, at the 7th d of cold-storage the third component (T2) was detected. Significant correlations were observed between T21 and T22 relaxation times and water-holding capacity in minced beef, implying that the LF-NMR measurements could be an efficient method for the determination and prediction of beef freshness. NO-Hb- ginger mixture, as a novel ingredient, could be used instead of nitrite in terms of meat safety.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Carne Vermelha/microbiologia , Animais , Bovinos , Cor , Hemoglobinas/farmacologia , Compostos Nitrosos/farmacologia , Extratos Vegetais/farmacologia
20.
Food Chem ; 327: 127061, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454271

RESUMO

This study mainly investigated the effect of different salt concentrations (1, 3, or 5%) on triglycerides (TG) hydrolysis in muscle during salting by analyzing moisture distribution, TG hydrolysis, TG hydrolase activity, native and phosphorylated adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein content, lipid droplets morphology, and muscle microstructure. The results showed that increasing salt concentration could significantly decrease T21 moisture proportion and relaxation time (p < 0.05), which was more beneficial to the lipase activity. The TG hydrolase activity increased first and then decreased with the salt concentration increasing during dry-salting process, and 3% salt concentration was the point of inflection. Western blot (WB) analysis detected both ATGL, HSL and their phosphorylated proteins, which were increased with the salt content increase. The microstructure analysis showed that the lipid droplets were split into small lipid droplets with the increase of salt content, which was more conducive to the triglycerides hydrolysis.


Assuntos
Tecido Adiposo/metabolismo , Músculos Isquiossurais/metabolismo , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Cloreto de Sódio/farmacologia , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Músculos Isquiossurais/efeitos dos fármacos , Hidrólise , Gotículas Lipídicas/efeitos dos fármacos , Fosforilação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...